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A theorem of Paul Roberts ([21]) states that the integral closure of a regular local ring in a generically
abelian extension is Cohen–Macaulay, provided the characteristic of the residue field does not divide
the order of the Galois group. An example of Koh in [14] shows the conclusion is false in the modular
case. After a modification to the statement concerning ramification over p in codimension one, we
give an extension of Roberts’s theorem to the modular case for unramified regular local rings in mixed
characteristic when the p-torsion of the Galois group is annihilated by p.

1 Introduction
It is a classical question in commutative algebra and algebraic geometry to study the variety Spec(R)

in terms of the fibres of a finite morphism f : Spec(R) → Spec(S), where R is a normal domain and S
is regular. Such an S is available when R is a finitely generated algebra over a field or is complete. For
example, the purity of branch locus states that if f is unramified in codimension one, then f is étale, see
[23], [17], [18], and [2]. Generalizations and variants of this theorem have been studied extensively by
relaxing the hypothesis that S is regular and establishing whether good properties of S transfer to good
properties of R when there is no ramification in low codimension, see for example [8], [5], [6], [4], [12]. One
such property whose transfer has been studied is that of Cohen–Macaulayness. The work in this paper
fits in the framework of a related, but orthogonal question—are there good patterns of ramification in
codimension one that result in transfer of good properties (Cohen–Macaulayness) from (regular) S to R?
As far as we know, very little is known in this direction.

Our study is motivated by a theorem of Roberts in [21] that states that the integral closure of
a regular local ring in an abelian extension of its fraction field is Cohen–Macaulay, provided the
characteristic of the residue field does not divide the order of the Galois group. This result has seen
generalizations/applications to the theory of algebraic monoids, singularity theory and arithmetic
schemes with a tame action over an abelian group, see [3, 11, 20]. We explain by means of an alternate
proof of this statement (see 3.3) as to why we view this result as one about “good ramification” in
codimension one. Roberts’s theorem fails in the modular case, that is, when the characteristic of the
residue field divides the order of the Galois group. Koh in [14] gave an example of this phenomenon
in mixed characteristic. One way to explain this is to note that Roberts’s theorem relies on Maschke’s
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theorem and there is no direct analog of such an argument in the modular case. But beyond this, not
much seems to be known in this regard; see [7] for comments. Guided by intuition from our alternate
proof of Roberts’s theorem, we ask if there exists some analog of this theorem in mixed characteristic.

Let � : S → R be a map of commutative Noetherian rings and p ∈ Z a prime integer. Say � is p-
unramified if � is étale in codimension one over p, that is, if SP → RP is étale for all height one primes
P ⊆ S containing p (2.4). Similarly, in direct analogue to the notion in algebraic number theory, � is
tamely p-ramified if it is so in codimension one over p, see 2.6. If p ∈ S is a unit, these conditions are
satisfied vacuously. It is reasonable to expect that in mixed characteristic p > 0, if S → R is generically
abelian with S regular, R normal and S → R p-unramified, then R is Cohen–Macaulay. Unfortunately,
this is not true either, as evidenced by Koh’s example, see 5.2. Hence, to get an extension of Roberts’s
theorem to mixed characteristic, we turn to Kummer theory. Let X be an indeterminate over S and
p ∈ Z a prime integer. Then we say f ∈ S is p-unramified (resp. tamely p-ramified) if for some root ω

of the polynomial Xp − f ∈ S[X], S → S[ω] is p-unramified (resp. tamely p-ramified), where ∗ denotes
normalization (2.7). Otherwise, we say f ∈ S is p-ramified. The definitions are independent of the choice
of the root ω if S possesses a primitive p-th root of unity. We characterize these properties in terms of
numerical conditions in codimension one using the function �I (see 2.1 for the �I notation):

Theorem 1.1 (4.1). Let S be a regular local ring such that char(Frac(S)) = 0. Assume S possesses
a primitive p-th root of unity for p ∈ Z a prime integer. Then the following are equivalent:

(1) 0 �= f ∈ S is p-unramified.
(2) 0 �= f ∈ S is tamely p-ramified.
(3) either

(a) f ∈ S is a p-th power or
(b) f /∈ ⋃

Q∈Ass(S/(p)) Q and for all Q ∈ Ass(S/(p))

�QSQ (f ) ≥ [
∞∑

i=0

(1/pi)]ordQ(p) = p
p − 1

ordQ(p)

where �QSQ (f ) is the largest power t of Q such that f admits a p-th root in SQ/QtSQ .

Assume S has mixed characteristic p > 0 and that it possesses a primitive p-th root of unity. Given
a generically abelian extension S → R, with R normal, one has a canonical choice of elements and
codimension one primes (which we call canonical divisors) in S associated to it; this is explained in
Section 4. For instance, in the modular setup, if S → R is tamely p-ramified, then the canonical divisors
are precisely the codimension one primes in S away from p that ramify in R, see 4.9. If in addition to S → R
being tamely p-ramified, each canonical divisor in S is tamely p-ramified (the analogous requirement is
always satisfied in the non-modular setup), one obtains the following extension of Roberts’s theorem
for unramified regular local rings when the p-torsion of the Galois group is annihilated by p. In fact,
our result is a bit more general (see 4.10 and 4.12 for the definition of abelian extensions of tamely
p-ramified type):

Theorem 1.2 (5.1). Let S be an unramified regular local ring of mixed characteristic p > 0 with
quotient field L. Let K/L be a finite abelian extension with p-torsion annihilated by p and R
the integral closure of S in K. If K/L is of tamely p-ramified type over S, then R admits a small
Cohen–Macaulay algebra.

We discuss how our results apply to Koh’s example, see 5.2; in particular, Koh’s example admits a
small Cohen–Macaulay algebra. Finally, we observe in 6.1 that the p-ramified canonical divisors are in
some sense the obstruction to such an analog in full generality and present a calculation involving
the first p-ramified case showing the existence of a small Cohen–Macaulay module of rank at most
(p − 1)pp(d−1)+1, where d = dim(S).

The paper is organized as follows. Section 2 contains preliminary definitions and results that are used
later. Section 3 contains the alternate take on Roberts’s theorem. Section 4 consists of the numerical
characterization of the p-unramified property and the definitions of (quasi) p-unramified abelian
extensions. Section 5 presents the main result and includes a discussion on Koh’s example. Finally,
section 6 comments on the p-ramified case.
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2 Preliminaries
In this section, we present some definitions and prove some preliminary results in preparation for the
sections that follow.

Convention 2.1.

(1) Rings are commutative and modules are finitely generated.
(2) For an integer n, �n(x) ∈ Z[x] will denote the n-th cyclotomic polynomial.
(3) A Noetherian ring R admits a small Cohen–Macaulay (CM) algebra T if there is an injective, module

finite map of rings R → T such that T is Cohen–Macaulay.
(4) Suppose S is a ring and I � S an ideal. For m ∈ Z, m ≥ 0, let φm : S → S/Im denote the natural map.

Define

�I : S × Z → Z≥0 ∪ {∞}

(f , n) 
→ {sup{m} | n

√
φm(f ) ∈ S/Im}.

Here n
√

φm(f ) refers to any root of the polynomial Xn − f ∈ S/Im[X], where X is an indeterminate
over S/Im.

(5) A Noetherian ring R of prime characteristic p > 0 is F-finite if the Frobenius endomorphism F : R → R
makes R into a module-finite R-algebra.

Recall the following:

Definition 2.2 ([1]). Let S be a ring and R an S-algebra. P ∈ Spec(S) is unramified in R if for all
Q ∈ Spec(R) lying over P, PRQ = QRQ and SP/PSP → RQ/QRQ is a finite separable field extension.
We say R is unramified over S if every P ∈ Spec S is unramified in R. We say R is étale over S if
it is flat and unramified over S.

Remark 2.3 ([1]). Let S → R be a module finite extension of normal domains. Then R is unramified
over S if and only if R is étale over S.

We say a ring map S → R is étale over a ∈ S in codimension one if SP → RP is étale for all height one
primes P ⊆ S containing a.

Definition 2.4. Let � : S → R be a map of Noetherian rings and p ∈ Z a prime integer. We say � is
p-unramified if � is étale in codimension one over p. Otherwise, we say � is p-ramified.

Definition 2.5. A local extension of DVRs (V1, π1, k1) → (V2, π2, k2) is tamely ramified if the induced
extension of residue fields is separable and ordπ2V2 (π1) is coprime to char(k1).

Definition 2.6. Let � : S → R be a module finite map of normal domains and p ∈ Z a prime integer.
We say � is tamely p-ramified, if for all height one primes Q ∈ Spec(R) containing p, SQ∩S → RQ

is tamely ramified.

Definition 2.7. Let S be a Noetherian semi-local regular ring and X an indeterminate over S. Let
p ∈ Z be a prime integer and n any integer. Then f ∈ S is p-unramified over n if for some root
ω of the polynomial Xn − f ∈ S[X], S → S[ω] is p-unramified, where ∗ denotes normalization.
Otherwise, f ∈ S is p-ramified over n. If n = p, we just say f ∈ S is p-unramified or p-ramified
respectively. A subset V ⊆ S is p-unramified over n if each element of V is so.

We say f ∈ S is tamely p-ramified over n if for some root ω of the polynomial Xn − f ∈ S[X], S → S[ω]
is tamely p-ramified. If n = p, we just say f ∈ S is tamely ramified.

Remark 2.8. In general, 2.7 is dependent on the choice of the n-th root. For instance, if S is an
unramified regular local ring of odd mixed characteristic p and f = hp is a p-th power in S,
then the extension corresponding to ω = h is étale in codimension one over p, but the one
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4 | D. Katz and P. Sridhar

corresponding to ω = hε for ε a primitive n-th root of unity is not. However, when S possesses
a primitive n-th root of unity, any two distinct n-th roots define the same extension and hence
the definition is independent of the choice of n-th root.

Remark 2.9. With notation as in 2.7, if q | n and f ∈ S is p-unramified over n, then f ∈ S is p-
unramified over q. Similarly, if f ∈ S is tamely p-ramified over n, then f ∈ S is tamely p-ramified
over q.

We need 4.1 to give interesting examples of 2.7, but 2.10 lists a few basic ones. On the flip side, once
we have 4.1, its explicit nature makes it easy to write down examples.

Example 2.10.

(1) If p ∈ S is a unit, then vacuously, every f ∈ S is p-unramified.
(2) If S is a regular local ring of mixed characteristic p > 0, then p ∈ S is p-ramified. More generally,

any f ∈ ⋃
P∈Ass(S/p) P is p-ramified.

(3) If S is an unramified regular local ring of mixed characteristic p > 0 and f ∈ S is not a p-th power
modulo pS, then f ∈ S is p-ramified. To see this, note that since S/pS is integrally closed, Xp − f is
irreducible modulo pS, so that p ∈ S[ω] is prime and the induced extension of residue fields from
S(p) → S[ω](p) is purely inseparable.

For a ring S, an element x ∈ S is said to be square free if for all height one primes x ∈ Q ⊆ S, QSQ = xSQ .
Throughout this paper, the notation n

√
a for a ∈ S, refers to any root of the polynomial Xn − a ∈ S[X] in

some extension of the total quotient ring of S (when there is no cause for confusion). We include the
following two results from [9] for convenience:

Proposition 2.11 ([9]). Let S be an integrally closed Noetherian domain and n ∈ S a unit for some
positive integer n. Let a1, . . . , ar ∈ S be square free elements such that no two of them are
contained in a single height one prime ideal. Then a2, . . . , ar are square free in S[ n

√
a1].

Proposition 2.12 ([9]). Let S be an integrally closed Noetherian domain and n ∈ S a unit for some
positive integer n. Let a1, . . . , ar ∈ S be square free elements such that no two of them are
contained in a single height one prime ideal. Then R = S[ n

√
a1, . . . , n

√
ar] is integrally closed.

We record a motley collection of observations that we will need later. The proofs rely mostly upon
some standard facts, but we give details for the sake of completeness.

Proposition 2.13. Let S be an integrally closed domain such that char(Frac(S)) = 0 and p ∈ S is a
prime element for some prime integer p. Then �pr (x) ∈ Z[x] is irreducible over S.

Proof. The proof is essentially the same as the case S = Z, so we just provide a sketch. The point is
that Eisenstein’s criterion together with a change of variables still works in this setting. So, it suffices
to show that �pr (x + 1) is irreducible over S. To see this, recall that if r > 1 then �pr (x) = �p(xpr−1

), thus,

�pr (x + 1) = ((x + 1)pr−1
)p−1 + ((x + 1)pr−1

)p−2 + · · · + (x + 1)pr−1 + 1.

For each 1 ≤ k ≤ p − 1,
(pr−1

k

)
is divisible by p. It follows that �pr (x + 1) is an Eisenstein polynomial in Z[x].

Since p is prime in S, �pr (x + 1) is Eisenstein in S[x], and hence irreducible over S. �

Lemma 2.14. Let A be an integrally closed Noetherian domain with quotient field L and suppose
q1, . . . , qs ∈ A satisfy the following:

(i) q1, . . . , ql ∈ A are square-free non-units and ql+1, . . . , qs are units.
(ii) For 1 ≤ i ≤ l, no height one prime of A contains two of the square free elements q1, . . . , ql.
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On Abelian Extensions in Mixed Characteristic | 5

Suppose further that A contains a primitive n-th root of unity and n is a unit in A. Let K denote
the quotient field of A[ n

√
q1, . . . , n

√
qs]. Then the degree of K over L is enl, where e divides n. In

particular, the degree of K over L is a unit in A.

Proof. Consider a single expression α := n
√

q, an n-th root of q. If q is a square-free non-unit, then xn − q
is irreducible over A (and L), by [16], Theorem 9.1, and thus the degree of K over L equals n. Moreover,
since n is a unit in A, A[α] is integrally closed by 2.12. Now suppose q is a unit in A. Set [K : L] = d. We
now note that αd ∈ A, equivalently, αd ∈ L. Let ε ∈ L denote a primitive nth root of unity and f (x) denote
the minimal polynomial of α over L. On the one hand, since α is a root of xn −q, f (x) divides xn −q in L[x].
On the other hand, xn − q = (x − α)(x − αε) · · · (x − αεn−1) in K[x]. Thus f (x) = (x − αεi1 ) · · · (x − αεid ), for
indices i1, . . . , im. Therefore, the constant term of f (x), which belongs to L, is αdεt, where t = i1 + · · · + id,
Since εt ∈ L, we have αd ∈ L, as required. It follows that d is the least positive integer with αd ∈ L. Writing
n = dh + r, with 0 ≤ r ≤ d − 1, we have αn = αdhαr, which implies αr ∈ L. Thus, r = 0 and d divides n. Note
that A[α] is also integrally closed in this case.

For the general case, one proceeds by induction using the fact that A[ n
√

q1] is a normal domain, and
the hypotheses (i), (ii) are preserved in this ring (see 2.12). �

Lemma 2.15. Let S be a domain and for each 1 ≤ i ≤ n, let S ↪→ Ri be module finite extension of
domains such that R1⊗S · · ·⊗SRn is torsion free. Let V denote the join of the Ri in a fixed algebraic
closure of Frac(S). Assume that deg(

∏n
j=1 Frac(Rj) : Frac(S)) = ∏n

j=1 deg(Frac(Rj) : Frac(S)). Then
V � R1 ⊗S · · · ⊗S Rn as S-algebras.

Proof. Let � : R1 ⊗S · · · ⊗S Rn → V denote the natural surjection of S-algebras. Set L = Frac(S), K = Frac(V)

and Ki := Frac(Ri). By hypothesis, there exists an isomorphism of L-vector spaces K1 ⊗L · · · ⊗L Kn → K.
Thus

idL ⊗ � : L ⊗S (R1 ⊗S · · · ⊗S Rn) → L ⊗S V

is a surjection of finite dimensional L-vector spaces of the same rank and hence an isomorphism. Since
L is S-flat, this implies Ker(�) is torsion. Since R1 ⊗S · · · ⊗S Rn is torsion free, this implies � is injective
and hence an isomorphism. �

Lemma 2.16. Let ψ : S → R be a module finite homomorphism of rings. Suppose R admits a finite
module M such that M is S-free of rank n. Let N be any S-module. Then R admits a module C
such that C � N⊕n as S-modules.

Proof. Note that M defines a ring homomorphism φ : R → Mn×n(S) such that φ(ψ(S)) consists of scalar
matrices. The map is injective if and only if M is faithful over R. Set C := Mn×1(N) ∼= HomS(S, N⊕n). Then
C clearly admits an R-module structure via φ and the claim holds. �

Lemma 2.17.

(1) Let R be a ring with p ∈ Z prime such that p ∈ R is a non-unit. Let p ∈ I ⊆ R a proper ideal such that
R/I is an F-finite ring. Then for all e ∈ Z, e > 0, there exists a module finite R-algebra T such that
�IT(R, pe) ≥ 1.

(2) With notation as in (1), assume (R,m, k) is a complete regular local ring with k F-finite. Suppose
that I is generated by α1, . . . , αn such that α1, . . . , αn can be completed to a minimal generating set
for m. Then T can be chosen to be regular local with α1, . . . , αn part of a minimal generating set of
its maximal ideal.

Proof. Set R̄ := R/I and let F denote the Frobenius map on R̄.

(1) By hypothesis, Fe∗R̄ is a finite R̄-module for all e. Taking T to be the R-algebra obtained be adjoining
pe-th roots of a set of lifts of generators of Fe∗R̄ as a R̄-module, we have the desired property.

(2) Complete α1, . . . , αn to a minimal system of generators for m, say α1, . . . , αn, Xn+1, . . . , Xd and let xi

denote the image of Xi in R̄. Since k is F-finite and R̄ is complete, R̄ is an F-finite regular local ring.
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6 | D. Katz and P. Sridhar

Thus, R̄1/pe
is obtained by adjoining to R̄, the pe-th roots of the xi and the pe-th roots of a basis of Fe∗k

over k. Take T to be the R-algebra obtained by adjoining the pe-th roots of the Xi and the pe-th roots
of a fixed set of lifts of a minimal generating set of Fe∗k over k. By part (1), �IT(R, pe) ≥ 1. Moreover, it
follows easily that T is regular local with maximal ideal generated by (α1, . . . , αn, pe√Xn+1, . . . , pe√

Xd)

and residue field k1/pe
. �

We include the following for easy reference:

Lemma 2.18 ([13]). Let S be a ring and p ∈ S a prime integer such that p is a non-unit in S. Let
p ≥ 3 and write p = 2k + 1. For h ∈ S \ pS and x an indeterminate over S, if

C := (x − h)p − (xp − hp) =
k∑

j=1

(−1)j+1
(

p
j

)
(x · h)j[xp−2j − hp−2j] (2.18.1)

C′ := (p(x − h))−1 · C and P̃ := (p, x − h)S[x], then C′ /∈ P̃.

Lemma 2.19 ([13]). Let S be a ring and p ∈ S a prime integer such that p is a non-unit in S. Let
p ≥ 3 and write p = 2k + 1. For h ∈ S \ pS and x an indeterminate over S, suppose C′ is as defined
in 2.18. Then C′ ≡ hp−1 mod (p, x − h)S[x].

3 Roberts’s Theorem Revisited
In this section we give an alternate proof of the main theorem in [21]. Our extension of this theorem to
mixed characteristic relies on the proof in this section. First a preparatory observation.

Proposition 3.1. Suppose S is a regular local ring and ε is a primitive nth root of unity for some
integer n.

(i) If S is unramified, then S[ε] is a regular semi-local ring, and thus a UFD. Moreover, if S is complete
and has mixed characteristic, then S[ε] is a regular local ring.

(ii) If n is a unit in S, then S[ε] is a regular semi-local ring.

Proof. For (i) we prove the mixed characteristic case, since the proof of the equi-characteristic case is
similar (and easier). So suppose S is an unramified regular local ring of mixed characteristic p > 0 and
n its maximal ideal. Write n = prn0, with p � n0 and ε = ε1ε2 where ε1 is a primitive pr-th root of unity
and ε2 a primitive n0-th root of unity. By 2.13, S[ε1] = S[x]/(�pr (X)). Suppose M ⊆ S[x] is a maximal ideal
containing n and �pr (X). Since the binomial coefficients

(pr

i

)
for 1 ≤ i ≤ pr − 1 are divisible by p, modulo

p, we have xpr − 1 = (x − 1)pr
. Since p ∈ M, it follows that x − 1 ∈ M. Thus, M = (n, x − 1)S[x] is the unique

maximal ideal containing n and �pr (X), so that (n, ε1 − 1)S[ε1] is the unique maximal ideal in S[ε1]. In
Z[ε1], p = u(ε1 − 1)φ(pr), where u ∈ Z[ε1] is a unit and φ(−) is the Euler totient function (see [19, Lemma
10.1]). Thus, p is a redundant generator of (n, ε1 − 1)S[ε1], so that S[ε1] is a ramified regular local ring
(unless p = 2 and r = 1). Now set T := S[ε1], so that S[ε] = T[ε2]. Let m denote the maximal ideal of T
and set k := T/m. Since T[ε2] is an integral extension of T, it is semi-local and each of its maximal ideals
contract to m in T.

Now n0 �≡ 0 in k, so that the images of xn0 − 1 and its derivative are relatively prime in k[x]. Thus,
the image of xn0 − 1 factors into distinct irreducible factors. Thus, if we write g(x) for the minimal
polynomial of ε2 over the quotient field of T, then the image of g(x) in k[x], factors into a product of
distinct irreducible factors, say g(x) = q1(x) . . . qr(x) + m(x), where the images of the qi(x) in k[x] are
the distinct irreducible factors of the image of g(x) in k[x] and m(x) ∈ m[X]. Since T[ε2] = T[x]/(g(x)), it
follows that the maximal ideals of T[ε2] are Qi := (m, qi(ε))S[ε2] for 1 ≤ i ≤ r. Then, in T[ε2]Q1 , we have
q1(ε2) = −(q2(ε2) . . . qr(ε2))

−1m(ε2), so that Q1T[ε2]Q1 = mT[ε2]Q1 . Thus, T[ε2]Q1 is a regular local ring. The
argument is similar for i = 2, . . . , r. Therefore T[ε2] is a regular semi-local ring. Since a semi-local domain
which is locally a UFD, is a UFD, we have that T[ε2] = S[ε] is a UFD.

Part (ii) follows in the same way as the n0 case above. �

Remark 3.2. If (S,n, k) is a ramified regular local ring of mixed characteristic p, then for ε a
primitive p-th root of unity, S[ε] need not be regular. For instance, set S to be V[x, y]/(p − x2y3)
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On Abelian Extensions in Mixed Characteristic | 7

localized at the ideal generated by the images of p, x, y where V is any DVR with uniformizing
parameter p. Then S is a ramified regular local ring. Let ε be a primitive pth root of unity. Let m
be a maximal ideal in S[ε]. Let the polynomial ring S[t] map onto S[ε] in the obvious way. Then m

corresponds to a maximal ideal M ⊆ S[t] containing p and tp − 1, and hence M = (x, y, t − 1) and
thus m = (x, y, ε−1)S[ε] is the unique maximal ideal of S[ε]. In S[ε] we have x2y3 = p = u(ε−1)p−1,
for u ∈ Z[ε] a unit. Thus, S[ε] is not a regular local ring.

Theorem 3.3 (Roberts’s Theorem [21]). Let (S,n, k) be a regular local ring with quotient field L
and R the integral closure of S in a finite abelian extension L ⊆ K. Assume the characteristic of
k does not divide [K : L]. Then R is Cohen–Macaulay.

Proof. Let n denote the order of the Galois group of K over L, so that n is a unit in S. Let ε be a primitive
n-th root of unity. Then by 3.1, S[ε] is a (possibly ramified) regular semi-local ring. Moreover, R[ε] is the
integral closure of S[ε] in K(ε). To see this, it is enough to show that R[ε] is integrally closed. Let R1 be
the integral closure of R in K(ε) and f (x) ∈ R[x], the minimal polynomial of ε over K. Since n is a unit
in R, xn − 1 has distinct roots and hence f (x) is a separable polynomial. Thus, f ′(ε)R1 ⊆ R[ε]. Since R is
integrally closed, xn − 1 = f (x)g(x), with g(x) ∈ R[x]. Thus, nεn−1 = f ′(ε)g(ε), so that nR1 ⊆ R[ε]. Since n is
a unit in R[ε], we have R[ε] = R1.

Suppose we could show that R[ε] is Cohen–Macaulay. Since R[ε] is free over R, R is a summand of R[ε],
and thus R is Cohen–Macaulay. Therefore, it remains to be seen that R[ε] is Cohen–Macaulay. For this,
we use Kummer Theory. Now, it is straightforward to see that Gal(K(ε)/L(ε)) is isomorphic to a subgroup
of Gal(K/L), and hence Gal(K(ε)/L(ε)) is an abelian group. Let t denote the exponent of Gal(K(ε)/L(ε)),
so that t is a unit in S[ε], since t | n. By Kummer theory, there exist a1, . . . , as ∈ L(ε) such that K(ε) =
L(ε, t

√
a1, . . . , t

√
as). Clearing denominators, we may assume that each ai ∈ S[ε]. Thus, K(ε) is the quotient

field of S[ε][ t
√

a1, . . . , t
√

as].
Now, as an element of S[ε], each ai is a unit times a product of primes. Let q1, . . . , qh be the distinct

unit and prime factors appearing among a1, . . . , as. Then no height one prime of S[ε] contains any two
qi, qj. Thus, by 2.12, T := S[ε][ t

√
q1, . . . , t

√
qh] is integrally closed. Set E to be the quotient field of T. Moreover,

K(ε) ⊆ E, so that R[ε] ⊆ T. By 2.14, degree of E over L(ε) is a is a unit in R[ε]. Therefore, the degree of E over
K(ε) is a unit in R[ε], and hence R[ε] is a summand of T via the splitting given by restricting the field trace
map and dividing by the degree of E over K(ε). But T is a free extension of S[ε], so T is Cohen–Macaulay,
and hence R[ε] is Cohen–Macaulay, which completes the proof. �

4 Abelian Extensions and the Tamely p-Ramified Property
The goal of this section is twofold: firstly, to characterize the tamely p-ramified property in terms of a
certain numerical criterion in codimension one and secondly, to define tamely p-ramified generically
abelian extensions of an unramified regular local ring.

We will show

Theorem 4.1. Let S be a regular local ring such that char(Frac(S)) = 0. Assume S possesses a
primitive p-th root of unity for p ∈ Z a prime integer. Then the following are equivalent:

(1) 0 �= f ∈ S is p-unramified.
(2) 0 �= f ∈ S is tamely p-ramified.
(3) either

(a) f ∈ S is a p-th power or
(b) f /∈ ⋃

Q∈Ass(S/(p)) Q and for all Q ∈ Ass(S/(p))

�QSQ (f ) ≥ [
∞∑

i=0

(1/pi)]ordQ(p) = p
p − 1

ordQ(p).

Lemma 4.2. Let D be a Gorenstein Noetherian domain such that the prime integer p is a non-
unit in D. Suppose that Ass(D/(p)) = {(α)} and let k be such that p ∈ (αk) \ (αk+1). Let f ∈ D be
such that f is not a p-th power and 1 ≤ q := �(α)(f ). Let ω be a root of the monic polynomial
Xp − f ∈ D[X] in some algebraic closure of the fraction field of D. Set r = min{q, k + 1}. For
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8 | D. Katz and P. Sridhar

any positive integer n satisfying n ≤ (p − 1)−1min{q, k} and h any p-th root of f modulo αr, set
Jn,h := (ω − h, αn)p−1D[ω]. Then

(1) HomD[ω](Jn,h,D[ω]) = 〈1, q1, . . . , qp−1〉D[ω] where qi : Jn,h → D[ω] is the map given by multiplication
by α−ni(ω − h)i.

(2) Jn,h is P-primary for P := (α, ω − h), the unique associated prime of pD[ω].
(3) HomD[ω](Jn,h,D[ω]) is a maximal Cohen–Macaulay D-module.

Proof. Since f ∈ D is not a p-th power, we have D[ω] � D[X]
(Xp − f )

. Write f = hp + αr · b for some h, b ∈ D.

Taking S = D in 2.18, let C′ ∈ D[X] be as in 2.18. We have

Xp − f = Xp − hp − αrb

= (X − h)(Xp−1 + · · · + hp−1) − αrb

= (X − h)((X − h)p−1 + C′p) − αrb

= (X − h) · (X − h)p−1 + C′p(X − h) − αrb

= (X − h) · (X − h)p−1 + αn(p−1) · γ (4.2.1)

for some γ ∈ D[X]. Thus Xp − f ∈ J̃n,h := (X − h, αn)p−1 ⊆ D[X]. Since J̃n,h is a power of a complete
intersection ideal, it is unmixed. Moreover, it is P̃-primary for P̃ := (X − h, α). Thus Jn,h is P-primary and
(2) holds.

J̃ is the ideal of maximal minors of the p × (p − 1) matrix

�n,h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X − h 0 . . . 0 0
αn X − h 0 . . . 0
0 αn X − h . . . 0
... 0

. . .
. . .

...
0 . . . 0 αn X − h
0 . . . 0 0 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Set

�n,h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X − h 0 . . . 0 0 −γ

αn X − h 0 . . . 0 0
0 αn X − h . . . 0 0
... 0

. . .
. . .

...
...

0 . . . 0 αn X − h 0
0 . . . 0 0 αn −(X − h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By [15, Lemma 2.5], HomD[ω](Jn,h,D[ω]) � (Jn,h)
−1
D[ω] is generated as a D[ω]-module by the maps given by

multiplication by the elements {δ−1
i ψi,i}1≤i≤p where δi and ψi,i denote the images in D[ω] of the i-th signed

minor of �n,h and the (i, i)-th cofactor of �n,h respectively. This is precisely the generating set claimed
in (1).

For (3), note that HomD[ω](Jn,h,D[ω]) � (Jn,h)
−1
D[ω] is isomorphic to a 1-link of Jn,h. Since Jn,h is height one

unmixed and D[ω] is Gorenstein, D[ω]/Jn,h is Cohen–Macaulay if and only if D[ω]/I is Cohen–Macaulay
for any 1-link I of Jn,h (see [10][Proposition 2.5]). Moreover, I is a Cohen–Macaulay D[ω]-module if and only
if D[ω]/I is a Cohen–Macaulay ring. Since D[ω]/Jn,h � D[X]/J̃n,h is Cohen–Macaulay by the Hilbert–Burch
theorem, we are done. �

Lemma 4.3. Let S be a regular local ring such that char(Frac(S)) = 0. Assume S possesses a
primitive p-th root of unity for p ∈ Z a prime integer. If 0 �= f ∈ S, f /∈ ⋃

Q∈Ass(S/(p)) Q, satisfies for
all Q ∈ Ass(S/(p)), �QSQ (f ) ≥ p · (p − 1)−1ordQ(p), then
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On Abelian Extensions in Mixed Characteristic | 9

(1) S → S[ω] is étale over p in codimension one for some (equivalently every) root ω of the polynomial
Wp − f ∈ S[W], where ∗ denotes normalization and W is an indeterminate over S.

(2) If p ∈ S is not a unit, then for each prime divisor q of p, S[ω](q) is generated as a S[ω](q) module by
{1, q−r(ω − hq), . . . , q−r(p−1)(ω − hq)

p−1} for some hq ∈ S(q) and r = (p − 1)−1ordq(p) ∈ Z.

Proof. (1) holds vacuously if p ∈ S is a unit. Assume p ∈ S is not a unit. Let ω be any root of the polynomial
Wp−f ∈ S[W] in a fixed algebraic closure of Frac(S) and set R = S[ω]. Let q be any prime divisor of p. By 2.3,
it suffices to show Sq → Rq is unramified. Write f = hp

q+qnbq for some hq, bq ∈ S(q) and n ≥ p/p−1·ordQ(p).
Since we work locally, we drop the lower index “q”. We have in A := S(q)[ω]:

qn · b = ωp − hp

= (ω − h)p + p · c′ · (ω − h) (4.3.1)

where c′ ∈ A is the image in A of the element C′ ∈ S(q)[W] in 2.18. Let ε ∈ S be a primitive p-th root of
unity. It is standard to see that p = −(c′

ε )
−1(ε − 1)p−1 where c′

ε is the image in Z[ε] of the corresponding
element C′

ε ∈ Z[W] from 2.18. Note that this implies ε −1 ∈ qS and ordq(ε −1) · (p−1) = ordq(p). We have

(ω − h)p − ((c′
ε )

−1 · c′)(ω − h)(ε − 1)(p−1) − qnb = 0. (4.3.2)

Let (ε − 1) = μ · qr for some unit μ ∈ S(q), so that ordq(ε − 1) = r. Setting U := (ω − h) and V := qr, 4.3.2
looks like

Up − ((c′
ε )

−1 · c′ · μp−1)UVp−1 − Vpb′ = 0 (4.3.3)

for some b′ ∈ A. Thus V−1U is integral over A

(U/V)p − ((c′
ε )

−1 · c′ · μp−1)(U/V) − b′ = 0. (4.3.4)

We claim that B := A[U/V] is regular. Setting P := (q, ω−h)A, maximal ideals in B correspond to height two
primes in A[X]/PA[X] containing the image of Ker(φ) where φ : A[X] → A[U/V] is the natural A-algebra
map. From, 2.19 we have

Xp − ((c′
ε )

−1 · c′ · μp−1)X − b′ ≡ Xp − (hμ)p−1X − b′ mod (PA[X]). (4.3.5)

By hypothesis, h ∈ A is a unit and hence the image of 4.3.5 in (A/P)[X] is irreducible over A/P if and
only if the Artin–Schreier polynomial (X/hμ)p − (X/hμ) − b′/(hμ)p is irreducible. If this polynomial is
irreducible, then since S(q) is universally catenary, it follows that there exists a unique maximal ideal Q
of B satisfying QBQ = PBQ = qBQ . Moreover, the associated extension of residue fields is separable since
it is given by a Galois extension of order p. If the polynomial is reducible, then necessarily

Xp − ((c′
ε )

−1 · c′ · μp−1)X − b′ ≡
p∏

i=1

(X − β − ihμ) mod (PA[X]) (4.3.6)

for some β ∈ A. Therefore, there are exactly p maximal ideals in B, say Q1, . . . , Qp, satisfying QiBQi =
(P, U/V − β − ih)BQi = (α)BQi . Moreover, the associated extension of residue fields in each case is trivial
and in particular separable. Thus B is regular and (1) holds. The assertion (2) also follows from what we
have just showed. �

Proof of Theorem 4.1. Since S possesses a primitive p-th root of unity, if f ∈ S is a p-th power, then
S[ω] = S, so trivially the associated extension is p-unramified. The remainder of the implication (3) �⇒
(1) is the content of 4.3(1). The implication (1) �⇒ (2) is trivial. We now prove the contrapositive of
(2) �⇒ (3). Let 0 �= f ∈ S and ω any root of the polynomial Wp − f ∈ S[W] in a fixed algebraic closure
of L := Frac(S). Assume f ∈ S is not a p-th power. Set R = S[ω]. Suppose there exists a prime divisor
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10 | D. Katz and P. Sridhar

q ∈ S of p such that �qS(q)
(f ) <

p
p − 1

ordq(p). We will show that S → S[ω] is not tamely ramified over p. If

�qS(q)
(f ) = 0, then S(q) → S(q)[ω] induces a purely inseparable extension of residue fields. Hence S(q) → R(q)

is not tamely ramified over p. Now assume �qS(q)
(f ) = n ≥ 1. Let ε ∈ S be a primitive p-th root of unity. It

is standard to see that p = −(c′
ε )

−1(ε − 1)p−1 where c′
ε is the image in Z[ε] of the corresponding element

C′
ε ∈ Z[W] from 2.18. Note that this implies ε −1 ∈ qS and ordq(ε −1) · (p−1) = ordq(p). Write f = hp +qnb

for some b, h ∈ S(q). Let (ε − 1) = μ · qr for some unit μ ∈ S(q), so that ordq(ε − 1) = r. As in the proof of 4.3
we have in A := S(q)[ω]:

(ω − h)p − ((c′
ε )

−1 · c′ · μp−1)(ω − h)qr(p−1) − qnb = 0. (4.3.7)

Write n = kp + s with 0 ≤ s < p. Note that kp ≤ n < pr implies k < r. Dividing by qkp and setting
β = q−k(ω − h) ∈ L(ω), we have

βp − (c′
ε )

−1 · c′ · (μqr−k)p−1β − qsb = 0 (4.3.8)

an integral equation for β over A. Suppose s = 0. We claim that this implies �qS(q)
(b) = 0. To see this, let

if possible b = up +qv for some u, v ∈ S(q). Then f = hp +qkp(up +qv) = (h+qku)p +qkp+1v+pqkuα for some

α ∈ S(q). Now, k+ordq(p) > k+ (p − 1)n
p

= n/p+(p−1)n/p = n. This implies �qS(q)
(f ) ≥ n+1, a contradiction.

Thus if s = 0, then �qS(q)
(b) = 0. Noting that the extension S(q) → S(q)[ω] induces a trivial extension of

residue fields, one sees that if s = 0, then A[β] is local and the extension S(q) → A[β] induces a purely
inseparable extension of residue fields. Thus, if s = 0, S(q) → R(q) is not tamely ramified over p. Now,
assume s ≥ 1. From 4.3.8, one sees that in the local ring A[β], qs is an associate of βp. This continues
to hold after localization at each maximal ideal of S[ω]. Thus p divides the order of qs at each maximal
ideal of S[ω]. Since 0 ≤ s < p − 1, this implies p divides the order of q at each maximal ideal of S[ω]. Thus
S(q) → R(q) is not tamely ramified over p.

Finally, suppose f is divisible by some prime divisor q of p. We may assume that ordq(f ) ≤ p − 1.

It is then easily seen that �qS(q)
(f ) ≤ p − 1 <

p
p − 1

ordq(p), so that by what we have just shown

S(q) → R(q) is not tamely ramified over p. Thus the proof of the implication (2) �⇒ (3) and the theorem
is complete. �

We now proceed to define tamely p-ramified and tamely p-ramified type abelian extensions of an
unramified regular local ring of mixed characteristic p > 0. Let S denote a semi-local regular ring such
that L := Frac(S) has characteristic zero. Assume that S possesses a primitive n-th root of unity for an
integer n. Let K/L be a finite abelian extension of exponent n. By Kummer theory, K corresponds to a
unique subgroup U of L× containing L×n as a subgroup of index equal to [K : L]. Since S is a unique
factorization domain, each coset of U in turn corresponds to a unique element of the monoid S/Sn. For
each non trivial class in S/Sn, there is a unique element (up to multiplication by an element of (S×)n)
in S representing it satisfying the condition that its order at each of its prime divisors is at most n. We
call such a representative in S corresponding to a coset U a canonical element for K/L in S. The canonical
divisors of K/L in S are the union of the prime divisors of each canonical element (possibly empty). (Our
usage of the term canonical divisor is specific to our setting and is not meant to suggest any connection
with its typical usage in algebraic geometry.)

Example 4.4. Suppose K/L above has order p for p ∈ Z a prime integer. Then K = L(ω) for ω a root
of the irreducible polynomial Wp − f ∈ L[W], for W an indeterminate over L. Moreover, K = L(μ)

for μ a root of Wp − g ∈ L[W] if and only if g ∈ ∪p−1
i=0 f i · (L×)p. There is a unique element (up to

multiplication by an element of (S×)p) g ∈ (f · (L×)p)∩ S such that g = λae1
1 . . . aer

r , where λ ∈ S is a
unit, a1, . . . , ar ∈ S are primes and 0 ≤ e1, . . . , er ≤ p − 1. Then g is a canonical element for K/L in
S corresponding to the coset f · (L×)p and is unique up to multiplication by an element of (S×)p.
The canonical elements corresponding to the cosets f i · Lp divide a sufficiently large power of
g for each 0 ≤ i ≤ p − 1. Hence the canonical divisors of K/L in S are a1, . . . , ar (possibly empty).

Example 4.5. Now let K/L be a finite abelian extension with Galois group G := Z/pZ⊕n for p ∈ Z a
prime integer. Let K1, . . . , Kn denote the fixed fields of the n subgroups of G obtained by taking
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On Abelian Extensions in Mixed Characteristic | 11

the quotient by each copy of Z/pZ. The canonical divisors of K/L are the union of the divisors
of each Ki/L.

Now let R be the integral closure of S in K. Let X ⊆ Spec(S) be the ramification locus of the map S → R
and let X0 ⊆ X the subset of codimension one primes. Then V(X0) = X. To see this, note that a map of
rings A → B is unramified if and only if it is of finite type and the module of Kl̈ahler differentials �B/A = 0.
Since �B/A commutes with localization, it follows that V(X0) ⊆ X. The reverse inclusion X ⊆ V(X0) follows
from the purity of branch locus. For each prime integer divisor q of n, let Xq denote the prime divisors
of q in S, and X the union of all the Xq.

Proposition 4.6. Let C denote the canonical divisors of K/L in S. We then have

X0\X ⊆ C ⊆ X0 ⊆ C ∪ X.

Proof. Consider a height one prime Q of S outsideC∪X. By Kummer theory and 2.12, RQ = SQ [ n
√

f1, . . . , n
√

fr]
where f1, . . . , fr are the canonical elements of K/L in S. Since Q is coprime to the canonical divisors of K/L
in S and the prime divisors of n, it follows that the induced extensions of residue fields are all separable.
From 2.11, it then follows that SQ → RQ is unramified. This gives the inclusions X0\X ⊆ C and X0 ⊆ C∪X.

Now clearly if c ∈ C is a divisor of a canonical element f , then c ramifies in the extension S → S[ n
√

f ] and
hence ramifies in S → R, that is, c ∈ X0. This completes the proof. �

Remark 4.7. If S is local and n ∈ S is a unit (in particular under the setup of 3.3), 4.6 is saying
C = X0, that is, the canonical divisors of K/L in S are precisely the height one primes in S that
ramify along S → R.

Definition 4.8. Let S be a semi-local regular ring with L := Frac(S) having characteristic zero and
p ∈ Z a prime integer. Assume S possesses a primitive n-th root of unity and let K/L be a finite
abelian extension whose Galois group has exponent n. Let R be the integral closure of S in K. We
say K/L is tamely p-ramified over S if S → R is tamely p-ramified and either the set of canonical
divisors are empty or the canonical divisors are tamely p-ramified over n.

By construction, the set of canonical divisors for K/L in S are uniquely determined, so the property
of being a tamely p-ramified abelian extension is intrinsic to the given extension.

Remark 4.9. Assume notation as in 4.8. Suppose S is local of mixed characteristic p and p | n.
Then if S → R is tamely p-ramified (in particular if K/L is tamely p-ramified over S), we have
C = X0\V(p), that is, the canonical divisors of K/L in S are precisely the codimension one primes
in S away from p that ramify in R. To see this, note that in 4.6,X is nothing but the prime divisors
of p in S. Thus, X0\V(p) ⊆ C by 4.6. Now let if possible q ∈ C for q a prime divisor of p in S. Then

if q is a divisor of a canonical element f ∈ S, one sees that S → S[ p
√

f ] is not tamely p-ramified.

Hence S → S[ n
√

f ] and S → R are not tamely p-ramified. This is a contradiction. Thus C∩V(p) = ∅
and we see from 4.6 that C ⊆ X0\V(p).

Definition 4.10. Let S, L, K, and p be as in 4.8. We say K/L is of tamely p-ramified type over S if there
exists a module finite injective map of regular rings f : S → T such that

(1) f∗ : Spec(T) → Spec(S) is injective in codimension one on the fiber over V(p) and
(2) for all Q ∈ V(p) ⊆ Spec(S), ordQ(p) = ordf−1∗ (Q)(p) and
(3) Frac(T)K/Frac(T) is tamely p-ramified over T.

Example 4.11. Let L = Q(X) for X an indeterminate over Q and K := L(ω) for ω a root of the
polynomial Y2 − X − 4 ∈ L[Y]. Consider the two dimensional regular local subring S ⊆ L defined
as S := Z[X](2,X). Then K/L is not tamely 2-ramified over S. To see this, note that S[ω] is integrally
closed and that that S → S[ω] is not étale in codimension one over 2. Consider the extension of
regular local rings S → T for T := Z[

√
X](2,

√
X). Then Q(

√
X)(ω)/Q(

√
X) is tamely 2-ramified over

T by 4.1. Thus, K/L is of tamely 2-ramified type over S.
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12 | D. Katz and P. Sridhar

Note that if S is an unramified regular local ring of mixed characteristic p > 0, then S does not possess
a primitive p-th root of unity unless p = 2.

Definition 4.12. Let S be an unramified regular local ring with L := Frac(S) having characteristic
zero and p ∈ Z a prime integer. Let K/L be a finite abelian extension with exponent n. Then K/L
is (resp. of tamely p-ramified type) tamely p-ramified over S if K(ε)/L(ε) is (resp. of tamely p-ramified
type) tamely p-ramified over S[ε] for some (equivalently every) primitive n-th root of unity ε.

Remark 4.13. Note that 4.12 is well defined due to 3.1 and the fact that if ε and ε′ are distinct
primitive n-th roots of unity in a fixed algebraic closure of L, then S[ε] = S[ε′].

Example 4.14. Assume notation as in 3.3. In addition, assume S is an unramified regular local
ring of mixed characteristic p > 0. Then K/L is tamely p-ramified over S. To see this, let n be
the exponent of Gal(K/L) and ε a primitive n-th root of unity. Let the exponent of Gal(K(ε)/L(ε))

be m. If R is the integral closure of S in K(ε), then as in the proof of 3.3, one constructs a small
Cohen–Macaulay algebra R → T. By construction, it follows S[ε] → T is tamely p-ramified,
hence, S[ε] → R is tamely p-ramified. Moreover, if f ∈ S[ε] is a canonical divisor for K(ε)/L(ε)

and is not equal to εn/p − 1, then S[ε][ m
√

f ] is integrally closed by 2.12. Since m is coprime to p
it follows that S[ε] → S[ε][ m

√
f ] is p-unramified (in particular tamely p-ramified). If εn/p − 1 is a

canonical divisor, then S[ε, m
√

εn/p − 1] = S[ m
√

εn/p − 1] is regular local and S[ε] → S[ m
√

εn/p − 1] is
tamely p-ramified.

5 Abelian Extensions With p-Torsion Annihilated by p
In this section, we prove 5.1, an extension of Roberts’s theorem to mixed characteristic. We work under
the hypothesis that the base regular ring is unramified. Our arguments use this assumption in an
essential way: for instance to preserve regularity upon adjunction of a primitive p-th root of unity,
see 3.2. Note that in this case, under the assumptions of 3.3 (i.e., the non-modular case), a generically
abelian extension is automatically tamely p-ramified and the p-torsion in the Galois group is annihilated
by p. The former follows from 4.14 and the latter is trivial, since there is no p-torsion in the Galois group.
Thus the following theorem is an extension of Roberts’s theorem to mixed characteristic p > 0. We also
illustrate our results by discussing how they apply to an example of Koh in [14] that exhibits the failure
of Roberts’s theorem in the modular case.

Theorem 5.1. Let S be an unramified regular local ring of mixed characteristic p > 0 with
quotient field L. Let K/L be a finite abelian extension with p-torsion of the Galois group Gal(K/L)

annihilated by p and R the integral closure of S in K. If K/L is of tamely p-ramified type over S, then
R admits a small Cohen–Macaulay algebra.

Proof. Let n denote the exponent of K/L. Fix an algebraic closure of L and let ε be any primitive n-th root
of unity in it. Choose a map of regular rings S[ε] → T satisfying the conditions of 4.10 (S[ε] is regular
by 3.1). Set ψ = εn/p. Note that ψ − 1 is the unique prime divisor of p in S[ψ] and ordψ−1(p) = p − 1.
Note that S[ψ] → S[ε] is étale. By purity of branch locus, it suffices to check this in codimension one.
Let F ∈ S[ψ][X] be the minimal polynomial of ε over L(ψ). Note that n/p is a unit in S[ψ]. Since F divides
Xn/p −1 ∈ L[X] and the latter is separable modulo any height one prime of S[ψ], it follows that S[ψ] → S[ε]
is étale in codimension one. Thus, ψ −1 is the unique prime divisor of p in S[ε] and ord(ψ−1)S[ε](p) = p−1.
These continue to hold in T due to conditions (1) and (2) in 4.10.

Let K be the compositum of K and Frac(T). If m is the exponent of the Galois group of K/Frac(T), then
by Kummer theory, choose canonical elements g1, . . . , gs ∈ T such that K = Frac(T)(ω1, . . . , ωs) where the
ωi are m-th roots of the gi. Let R be the integral closure of T in K. It suffices to show that R admits
a small Cohen–Macaulay algebra. Let f1, . . . , fr′ be the canonical divisors of K/Frac(T) in T (possibly an
empty list). There exist units α1, . . . , αs ∈ T such that the integral closure of T[ m

√
f1, . . . , m

√
fr′ , m

√
α1, . . . , m

√
αs],

say T, is a module finite extension of R. We will show that T is Cohen–Macaulay, which would complete
the proof. Let R∗ be the integral closure of T[ p

√
f1, . . . , p

√
fr′ , p

√
α1, . . . , p

√
αs]. Note that each p

√
fi and each p

√
αi

is square free in T[ p
√

f1, . . . , p
√

fr′ , p
√

α1, . . . , p
√

αs] and hence in R
∗. Using 2.12, we then see that T is free over

R
∗. Thus, it suffices to show that R∗ is Cohen–Macaulay.
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Since T(ψ−1) → R(ψ−1) is tamely p-ramified, so is T(ψ−1) → T(ψ−1)[ p
√

gi] for each 1 ≤ i ≤ s, where
T(ψ−1)[ p

√
gi] is the integral closure of T(ψ−1)[ p

√
gi]. By 4.1, it follows that each T(ψ−1) → T(ψ−1)[ p

√
gi] is

étale over p. Moreover, since T(ψ−1) → R(ψ−1) is tamely p-ramified and p | n, it follows that ψ − 1

is not among f1, . . . , fr′ . Now T(ψ−1) → T(ψ−1)[ p
√

gi, p
√

f1, . . . , p
√

fr′ ] factors through T(ψ−1) → T(ψ−1)[ p
√

αi].

Since T(ψ−1)[ p
√

gi, p
√

f1, . . . , p
√

fr′ ] is integral over and birational to the join of the integral closures of
T(ψ−1)[ p

√
gi], T(ψ−1)[ p

√
f1], . . . , T(ψ−1)[ p

√
fr′ ], the former is the integral closure of the latter. For some subset

e1, . . . , ek of the list gi, f1, . . . , fr′ , the join of the integral closures of T(ψ−1)[ p
√

gi], T(ψ−1)[ p
√

f1], . . . , T(ψ−1)[ p
√

fr′ ]
is isomorphic to T(ψ−1))[ p

√
ei] ⊗T(ψ−1)

· · · ⊗T(ψ−1)
T(ψ−1)[ p

√
ek] by 2.15. Since fibre product of étale morphisms

are étale, it follows from 4.1 that T(ψ−1) → T(ψ−1))[ p
√

ei] ⊗T(ψ−1)
· · ·⊗T(ψ−1)

T(ψ−1)[ p
√

ek] is étale. Moreover, since
T[ p

√
ei] ⊗T · · · ⊗T T[ p

√
ek][1/p] is integrally closed by 2.12, it follows that T[ p

√
ei] ⊗T · · · ⊗T T[ p

√
ek] is regular in

codimension one and hence integrally closed. Hence each αi is p-unramified.
Note that S[ψ] is local and S[ψ]/(ψ − 1) � S/pS, so that ψ − 1 is a minimal generator of the maximal

ideal. Since S[ψ] → S[ε] is an étale map, 3.1(1) implies that the order of ψ−1 with respect to each maximal
ideal of S[ε] is 1. Condition (2) of 4.10 implies that the order of ψ − 1 with respect to each maximal ideal
of T is also 1. In particular, the localization at each maximal ideal of T/(ψ − 1)T is integrally closed and
hence T/(ψ − 1)T is integrally closed. We relabel the list f1, . . . , fr′ , α1, . . . , αs to f1, . . . , fr. Since the image
of each fi in the quotient field of T/(ψ − 1)T is a p-th power, it follows that each fi is a p-th power in
T/(ψ − 1)T. Write fi = hp

i + (ψ − 1)ai for some hi, ai ∈ T. By 4.1, �(ψ−1)T(ψ−1)
(fi, p) ≥ p. We have in T(ψ−1) :

hp
i + (ψ − 1)ai = (h1,i/h2,i)

p + (bi/ci)(ψ − 1)p

for some h1,i, h2,i, bi, ci ∈ T, h2,i, ci /∈ (ψ−1)T. This implies that (hih2,i)
p−hp

1,i ∈ (ψ−1)T and hence hh2,i−h1,i ∈
(ψ − 1)T. Thus, the above equation then implies that ai(ψ − 1) ∈ (ψ − 1)pT and thus ai ∈ (ψ − 1)p−1T.
In particular, each fi = hp

i + (ψ − 1)pdi for some di ∈ T. Set μi := p
√

fi. Using 4.2(i) and 4.3(ii), we see that
for Ji := (μi − hi, ψ − 1)p−1T[μi], we have HomT[μi](Ji, T[μi])(ψ−1) � T[μi](ψ−1). Note that by 2.12, T[μi][1/p] is

integrally closed. Hence by [13, Proposition 2.1(i)], HomT[μi](Ji, T[μi]) � T[μi]. By 4.2(iii), T[μi] is a maximal
Cohen–Macaulay T[μi]-module and hence is a Cohen–Macaulay ring. After discarding some of the μi if
necessary, we can assume that the Frac(T)(μi) satisfy the linear disjointness hypothesis over Frac(T) in
the statement of 2.15. Thus by 2.15, the join of the T[μi] is isomorphic as a T-algebra to T[μ1]⊗T · · ·⊗TT[μr].
Since the former is birational to and integral over T[μ1, . . . , μr], the proof would be complete if we show
that the latter is integrally closed. Since it is free over T it satisfies (S2) as a T-module and hence as a
ring. Moreover, T[μ1]⊗T · · ·⊗T T[μr][1/p] is integrally closed by 2.12. Since each T(ψ−1) → T(ψ−1)[μi] is étale
and fibre product of étale morphisms are étale, T(ψ−1) → T(ψ−1)[μ1] ⊗T(ψ−1)

· · · ⊗T(ψ−1)
T(ψ−1)[μr] is étale. In

particular, all height one primes containing p in T[μ1]⊗T · · ·⊗T T[μr] are regular and hence it is regular in
codimension one. Thus T[μ1] ⊗T · · · ⊗T T[μr] is integrally closed, so R

∗ is Cohen–Macaulay and the proof
is complete. �

Example 5.2 (Koh’s example). In [14, Example 2.4], Koh gives an example showing that the main
theorem of [21] fails in the modular case. We will observe that this example is p-unramified,
that is, étale in codimension one over p and show that our results yield a small Cohen–Macaulay
algebra over it.

Let S, L be as in 5.1. Assume p = 3 and dim(S) ≥ 3. Let ε be a primitive cube root of unity. Since
ε − 1 is a minimal generator of the maximal ideal of S[ε], it follows that i

√
3 is also a minimal

generator of the maximal ideal. Let i
√

3, x, y be part of a minimal generating set of the maximal
ideal of S[ε]. Let a := xy4 + 27, b := x4y + 27, f := ab2 and θ = 3

√
f in some fixed algebraic

closure of L. Let K = L(ε, θ) and R the integral closure of S in K. [14, Example 2.4] shows that R is
not Cohen–Macaulay. We see that ε − 1 is the unique prime divisor of p in S[ε], ordε−1(p) =
2 and that �(ε−1)S[ε](ε−1)

(f ) ≥ 6 ≥ p/(p − 1)ordε−1(p). By 4.1, f ∈ S[ε] is p-unramified, that is,
S[ε] → R is étale in codimension one over p. The canonical divisors for K/L(ε) in S[ε] are {a, b}.
Note that �(ε−1)S[ε](ε−1)

(a) = 0 = �(ε−1)S[ε](ε−1)
(b), so that K/L is not p-unramified in S. To see this,

suppose �(ε−1)S[ε](ε−1)
(a) ≥ 1. Since S[ε]/(ε − 1) is integrally closed, it follows that �(ε−1)(a) ≥ 1.

Since S[ε]/(ε − 1) is regular local with the images of x, y part of a minimal generating set for
the maximal ideal, this is impossible. However, K/L(ε) is a quasi-unramified abelian extension
over S[ε]. Consider the injective map of regular local rings f : S[ε] → T := S[ε][ 3

√
x, 3

√
y]. Then

(ε−1, 3
√

x, 3
√

y) is part of a minimal generating set for the maximal ideal of T. Then f and T satisfy
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conditions (1) and (2) of 4.10. Since Gal(K( 3
√

x, 3
√

y)/L(ε, 3
√

x, 3
√

y)) = Z/3Z and a, b ∈ T are prime,
the canonical divisors for K( 3

√
x, 3

√
y)/L(ε, 3

√
x, 3

√
y) in T are {a, b}. Since �(ε−1)T(ε−1)

(a) ≥ 6 ≥ (p/p −
1)ordε−1(p), by 4.1 a ∈ T is p-unramified. Similarly for b ∈ T. Thus from the proof of 5.1, we see
that the integral closure of T[ 3

√
a, 3

√
b] is Cohen–Macaulay and hence a small Cohen–Macaulay

algebra for R. Indeed, by 4.3(2) and 4.2(1), T[ 3
√

a](ε−1) � HomT[ 3√a](J, T[ 3
√

a])(ε−1) for J = ( 3
√

a −
3
√

x( 3
√

y)4, ε − 1)2T[ 3
√

a]. Since T[ 3
√

a][1/p] is integrally closed by 2.12, we see by [13, Proposition

2.1(i)] that T[ 3
√

a] � HomT[ 3√a](J, T[ 3
√

a]). Moreover, by 4.2(3), T[ 3
√

a] is Cohen–Macaulay. A similar

argument shows that T[ 3
√

b] � HomT[ 3√b](I, T[ 3
√

b]) for I := (
3
√

b − 3
√

y( 3
√

x)4, ε − 1)2T[ 3
√

b] and that

T[ 3
√

b] is Cohen–Macaulay. Let V be the join of T[ 3
√

a] and T[ 3
√

b]. By 2.15, V � T[ 3
√

a] ⊗T T[ 3
√

b]
as T-algebras. Since V is T-free, it satisfies S2 as a ring. Moreover, by 2.12, V[1/p] is integrally

closed. By 4.1, T(ε−1) → T[ 3
√

a](ε−1) and T(ε−1) → T[ 3
√

b](ε−1) are étale and since fibre product of

étale morphisms are étale, T(ε−1) → T[ 3
√

a](ε−1) ⊗T(ε−1)
T[ 3

√
b](ε−1) is étale. In particular, all height

one primes containing p in V are regular and hence V is integrally closed. Thus V is the integral
closure of T[ 3

√
a, 3

√
b] and from what we have shown V is T-free and hence Cohen–Macaulay.

More explicitly, V is T-free with a basis given by

{
1,

3
√

a − 3
√

x( 3
√

y)4

ε − 1
,
( 3
√

a − 3
√

x( 3
√

y)4)2

(ε − 1)2
,

3
√

b − 3
√

y( 3
√

x)4

ε − 1
,

3
√

a − 3
√

x( 3
√

y)4

ε − 1
·

3
√

b − 3
√

y( 3
√

x)4

ε − 1
,
( 3
√

a − 3
√

x( 3
√

y)4)2

(ε − 1)2
·

3
√

b − 3
√

y( 3
√

x)4

ε − 1
,

(
3
√

b − 3
√

y( 3
√

x)4)2

(ε − 1)2
,

3
√

a − 3
√

x( 3
√

y)4

ε − 1
· (

3
√

b − 3
√

y( 3
√

x)4)2

(ε − 1)2
,
( 3
√

a − 3
√

x( 3
√

y)4)2

(ε − 1)2
· (

3
√

b − 3
√

y( 3
√

x)4)2

(ε − 1)2

}
.

6 Comments on the p-Ramified Case
In this section we make a couple of observations concerning the p-ramified case. Let S be a regular
local ring of mixed characteristic p > 0 with quotient field L. Let K/L be a finite abelian extension with
p-torsion annihilated by p and R the integral closure of S in K. Let the exponent of Gal(K/L) be n and
assume S possesses a primitive n-th root of unity. Philosophically, if S → R is tamely p-ramified, then
the obstruction to an analog of Roberts’s theorem is the existence of p-ramified canonical divisors for
K/L in S. This is made concrete in 6.1. When S is complete with perfect residue field, we also exhibit
a calculation in the first p-ramified case and show that it admits a small Cohen–Macaulay algebra of
rank at most (p − 1)pp(d−1)+1 where d = dim(S).

Corollary 6.1. Let S and L be as in 5.1. Let K/L be a finite Abelian extension with p-torsion
annihilated by p and R the integral closure of S in K. Assume S → R is tamely p-ramified.
Let g1, . . . , gs be the canonical divisors of K(ε)/L(ε) in S[ε] where ε is a primitive n-th root of
unity for n the exponent of Gal(K/L). Let α1, . . . , αr be units in S[ε] such that each canonical
element is of the form αi · b for b a monomial in g1, . . . , gs. Let gU

i (resp. gR
i ) and αU

i (resp. αR
i )

denote the p-unramified (p-ramified) elements among the gi and αi. Then the integral closure
of S[ε][ n

√
g1, . . . , n

√
gs, n

√
α1, . . . , n

√
αr] admits a small Cohen–Macaulay algebra (module) if and only

if the integral closure of S[ε][{ p

√
gR

i }i, { p

√
αR

i }i}] admits one.

Proof. The forward implication is obvious. Let R
r denote the integral closure of S[ε][{ p

√
gR

i }i, { p

√
αR

i }i}].
Assume R

r admits a small Cohen–Macaulay module. We will show that the integral closure of
S[ε][ n

√
g1, . . . , n

√
gs, n

√
α1, . . . , n

√
αr] is free over R

r. By 2.16 the proof would then be complete. Since
S[ε](εn/p−1) → R(εn/p−1) is tamely p-ramified and p | n, it follows that ψ − 1 is not among g1, . . . , gs.
Thus each p

√
gi and each p

√
αi is square free in T[ p

√
g1, . . . , p

√
gs, p

√
α1, . . . , p

√
αr] and hence square free in its

integral closure R. Using 2.12, we then see that the integral closure of S[ε][ n
√

g1, . . . , n
√

gs, n
√

α1, . . . , n
√

αr]
is free over R. Hence it suffices to show that R is free over R

r. Let R
u denote the integral closure

of S[ε][{ p

√
gU

i }i, { p

√
αU

i }i}]. We will show that the join V of R
U and R

r is integrally closed, that is, V = R.
Discarding some elements if necessary, we may assume that the fraction fields of Rr and R

u are linearly
disjoint over L(ε). From the proof of 5.1, Ru is S-free and hence a projective S[ε] module. Since S[ε] is
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semi-local and the rank of the localization of Ru at each of its maximal ideals is constant,Ru is S[ε]-free.
Hence R

r ⊗S[ε] R
u is torsion-free. By 2.15, V � R

r ⊗S[ε] R
u. Clearly, Rr ⊗S[ε] R

u satisfies (S2). Moreover,
by 2.12, (Rr ⊗S[ε] R

u)[1/p] is integrally closed. Therefore R
r ⊗S[ε] R

u is integrally closed if and only if all
height one primes containing p are regular. Since S[ε](ε−1) → R

u
(ε−1) is étale and a base change of an

étale morphism is étale, we see that Rr
(ε−1) → R

r
(ε−1) ⊗S[ε](ε−1)

R
u
(ε−1) is étale. In particular, all height one

primes containing p in R
r ⊗S[ε] R

u are regular and hence it is integrally closed. Since R
u is S[ε]-free it

follows that R is free over R
r and the proof is complete. �

Remark 6.2. Assume notation as in 6.1. If all the gi are p-ramified, then S[ε][ n
√

g1, . . . , n
√

gs] need
not be Cohen–Macaulay, see [22, Example 4.8].

Let S be a complete unramified regular local ring of mixed characteristic p > 0 with perfect residue
field k and fraction field L. Let ε be a primitive p-th root of unity in a fixed algebraic closure of L. We
now exhibit a construction of a small Cohen–Macaulay algebra in the case of a degree p extension of
L(ε) with the property that some canonical element in T := S[ε] is square free and p-ramified (and hence
not tamely p-ramified by 4.1). We hope that this indicates a path to understanding the p-ramified case
in general.

Suppose K/L(ε) is a degree p extension such that some canonical element f ∈ T for K/L(ε) is square-
free and p-ramified. Then K = L(ε, ω) for ω = p

√
f . Let R be the integral closure of T in K, that is, the integral

closure of T[ω]. The result we seek is clear if dim(S) ≤ 2. Therefore assume d := dim(S) ≥ 3. Complete
ε − 1 to a minimal generating set (ε − 1, x2, . . . , xd) for the maximal ideal of T. If f is not divisible by ε − 1
or any of the xi’s, set g := f ; if f is divisible by either ε −1 or any of the xi’s set g to be the quotient of f by
such factors. Choose a strict sequence of regular local rings as constructed in the proof of 2.17(2) (adjoin
iterated p-th roots of the xi), T := T0 ⊆ T1 ⊆ · · · ⊆ Tp so that g ≡ (hp + ∑p−1

i=t hp
i (ε − 1)i) mod(ε − 1)pTp for

some h, ht, . . . , hp−1 ∈ Tp and 1 ≤ t ≤ p − 1. Let α be a p-th root of ε − 1 in the algebraic closure of L(ε).
Then D := Tp[α] is a regular local ring with α a minimal generator of its maximal ideal. Then g ∈ D is
square free by 2.11 and g ≡ (hp +∑p−1

i=t hp
i (α)pi) mod(αp2

D). Let μ denote a p-th root of g; it suffices to show
that the integral closure of D[μ] admits a small Cohen–Macaulay algebra. Note that ordα(p) = p(p − 1).
If ht = ht+1 = · · · = hp−1 = 0 then proceeding as in the proof of 4.3(1) and applying 4.2(3), one sees that
the integral closure of D[μ] is Cohen–Macaulay and R admits a small Cohen–Macaulay algebra. Now
without loss of generality assume that ht �= 0 and ht /∈ αD. Since p ∈ D is an associate of αp(p−1), it follows
that �αD(g) ≥ p(p − 1) + t. In particular, we may write g = rp + αp(p−1)+t · y for some r, y ∈ D, y /∈ αD.
Choose an integer 1 ≤ l ≤ p − 1 such that lt ≡ 1mod(pZ). Consider the extension D ⊆ Dl := D[ l

√
α]. Then

Dl is a regular local ring with l
√

α a minimal generator of the maximal ideal. Moreover, by 2.11, g ∈ Dl is
square free. Denote the unique height one prime ideal containing p in Dl[μ] by Pl := ( l

√
α, μ− r). We have

in A := Dl[μ]

( l
√

α)lp(p−1)+tl · y = μp − rp

= (μ − r)p + p · c′ · (μ − r) (6.2.1)

where c′ ∈ A is the image in A of the element C′ ∈ Dl[W] in 2.18. Recall that p = −(c′
ε )

−1(ε − 1)p−1 where
c′
ε is the image in Z[ε] of the corresponding element C′

ε ∈ Z[W] from 2.18. We have

(μ − r)p − ((c′
ε )

−1 · c′)(μ − r)( l
√

α)lp(p−1) − ( l
√

α)lp(p−1)+tly = 0. (6.2.2)

Write lp(p − 1) + tl = pq + 1 for an integer q. Note that lp > q. Dividing the above equation by ( l
√

α)pq

and setting ζ := ( l
√

α)−q(μ − r), we see that ζ is a root of the polynomial in A[X]

Xp − ((c′
ε )

−1 · c′)( l
√

α)(p−1)(lp−q)X − l
√

α · y. (6.2.3)

Since Dl is universally catenary, it follows that A[ζ ] has a unique height one prime containing p and
is generated locally by ( l

√
α, μ − r, ζ ). However, ζ · ( l

√
α)q = μ − r and Equation 6.2.3 shows that l

√
α is a

multiple of ζ locally. So, the unique height one prime containing p in A[ζ ] is regular and by 2.11, A[ζ ] is
regular in codimension one. Note that (p − 1)q ≤ pq + 1 ≤ �( l√α)(g) and (p − 1)q < (p − 1)pl = ord l√α(p).
Therefore, setting J := (μ−r, αq/l)A, we see from 4.2(1) that J−1

A = A[ζ ]. Thus A[ζ ] satisfies (S2) and is hence
integrally closed. In particular, A[ζ ] is a module finite algebra extension of R. Moreover, by 4.2(3), A[ζ ] is
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Cohen–Macaulay so that it is a small Cohen–Macaulay algebra for R. Finally, it follows from construction
that R admits a small Cohen–Macaulay module of rank at most (p − 1)pp(d−1)+1.
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